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Abstract

Background: Deer antlers are bony structures that re-grow at very high rates, making them an attractive model for
studying rapid bone regeneration.

Methods: To identify the genes that are involved in this fast pace of bone growth, an in vitro RNA-seq model that
paralleled the sharp differences in bone growth between deer antlers and humans was established. Subsequently,
RNA-seq (> 60 million reads per library) was used to compare transcriptomic profiles. Uniquely expressed deer
antler proliferation as well as mineralization genes were identified via a combination of differential gene expression
and subtraction analysis. Thereafter, the physiological relevance as well as contributions of these identified genes
were determined by immunofluorescence, gene overexpression, and gene knockdown studies.

Results: Cell characterization studies showed that in vitro-cultured deer antler-derived reserve mesenchyme (RM)
cells exhibited high osteogenic capabilities and cell surface markers similar to in vivo counterparts. Under identical
culture conditions, deer antler RM cells proliferated faster (8.6-11.7-fold increase in cell numbers) and exhibited
increased osteogenic differentiation (17.4-fold increase in calcium mineralization) compared to human
mesenchymal stem cells (hMSCs), paralleling in vivo conditions. Comparative RNA-seq identified 40 and 91
previously unknown and uniquely expressed fallow deer (FD) proliferation and mineralization genes, respectively,
including uhrfl and s700a10. Immunofluorescence studies showed that uhrfl and s700a710 were expressed in
regenerating deer antlers while gene overexpression and gene knockdown studies demonstrated the proliferation
contributions of uhrfl and mineralization capabilities of s700a10.

Conclusion: Using a simple, in vitro comparative RNA-seq approach, novel genes pertinent to fast bony antler
regeneration were identified and their proliferative/osteogenic function was verified via gene overexpression,
knockdown, and immunostaining. This combinatorial approach may be applicable to discover unique gene
contributions between any two organisms for a given phenomenon-of-interest.
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Background

Deer antlers can account for 28% of the skeletal body
weight [1, 2] and are the only known example of a mam-
malian tissue that regenerates rapidly, easily producing
10 kg or more of bone tissue within a relatively short
period of 2 to 3 months [1-7]. Although deer antlers and
human bone develop via intramembranous and endo-
chondral modes of ossification [3, 4, 6, 7], deer antlers can
grow up to 2 cm per day [3], which sharply contrasts with
human femur bone, which grows at 2 cm per year during
puberty [8]. Thus, if the molecular components that are
involved in this process can be elucidated, this knowledge
is expected to advance our understanding of the mamma-
lian bone regeneration and holds promise for rapidly gen-
erating large bone volumes for skeletal tissue engineering.

Despite previous efforts [3, 4, 6, 7, 9-20], genes involved
in fast antler regeneration remain poorly studied, and func-
tional demonstration of their role(s) in proliferation and
bone differentiation is lacking. For example, prior transcrip-
tomic studies of deer antler tissues employed mouse micro-
arrays [12], cONA-amplified fragment length polymorphism
(cDNA-AFLP) [15], or RNA-seq [18-20], but efforts to
identify and characterize gene contributions to rapid deer
antler growth have been hindered by logistical and technical
issues. Such limitations include cross-species hybridization
[12], sequence variation [21], the overwhelming number of
candidates in transcriptomic datasets [12, 18-20], and the
presence of complex spatial and temporal variables among
tissue samples [12, 15, 18-20]. Indeed, one of the foremost
challenges when working with transcriptomics datasets is
determining which detected genes play a role in prolifera-
tion, skeletal differentiation, or a completely unrelated cellu-
lar process. Thus, previous transcriptomic studies to date
have been limited to gene expression profiling with
little-to-no characterization of gene contribution to antler
proliferation or differentiation.

In this study, we hypothesized that an in vitro com-
parison of fallow deer (FD) and human RNA-seq data
could circumvent several of the aforementioned chal-
lenges in identifying FD antler proliferation and
mineralization genes. This was based on our reasoning
that the fast pace of deer antler regeneration must stem,
at least in part, from the rapid proliferation and differen-
tiation of skeletal progenitors. Thus, a comparison of
differentially expressed genes obtained from FD- or
human-derived cells cultured under identical control
and treatment group conditions would eliminate com-
plex in vivo spatial and temporal variables while simpli-
fying bioinformatics analysis to identify proliferation and
mineralization gene candidates uniquely expressed in
deer (Additional file 1: Figure S1; Additional file 2). Hu-
man mesenchymal stem cells (hMSCs) were selected to
be compared against as they are a clinically promising
therapeutic target for cell-based regenerative medicine
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[22]. In deer, antlers regenerate from skeletal progenitors
found in the periosteum of the cranial appendages called
pedicles (pedicle periosteum; PP), which, in turn, generate
reserve mesenchyme (RM) cells of the growing antler tip
that eventually differentiate into chondrocytes and mineral-
izing bone cells (Additional file 1: Figure S2) [3, 4, 6, 7].
Based on this, skeletal progenitors were collected from fal-
low deer (FD) facial periosteum (FP; as a non-antler-derived
control), PP, and RM tissues to determine a suitable cell type
for comparison with hMSCs. Subsequently, RNA-seq was
performed, and genes whose expression were unique to FD
antler progenitors were identified based on subtraction ana-
lysis between FD and human datasets. Lastly, the function
and physiological relevance of these identified genes were
determined by immunofluorescence, gene overexpression,
and gene knockdown studies.

Results

Characterization of deer antler-derived cells

In this study, cell characterization studies were per-
formed on FD- and human-derived skeletal progenitors
to establish an in vitro model for comparative RNA-seq.
Of the cells collected, RM cells exhibited the highest
alkaline phosphatase (ALP) activity in the presence of
osteogenesis-inducing bone morphogenetic protein-2
(BMP-2; Fig. 1la) while surprisingly, FP and PP cells
cultured under mineralization conditions with BMP-2
and dexamethasone for 24 days exhibited little-to-no
positive Alizarin Red S staining for calcium deposits
(Fig. 1b). Also, fluorescence-activated cell sorting
(FACS) analysis and immunofluorescence staining in-
dicated that in vitro-cultured RM cells were similar to
their in vivo counterparts [16, 17], with a majority
(99.3%) of RM cells expressing ALP and a small sub-
set (5.2%) expressing STRO-1 (Fig. 1c). Together,
these studies indicated that in vitro-cultured RM cells
were ideal models of deer antler skeletal progenitors
for comparison with hMSCs.

Establishment of an in vitro model that compares deer
antler-derived RM cells and hMSCs

Prior to performing RNA-seq, it was necessary to
characterize in vitro-cultured RM cells and hMSCs to
determine if there is sharply differential osteogenesis in
vitro which may reflect the significant bone growth dif-
ference in vivo. Successful demonstration of this
phenomenon in vitro would thus justify its use for com-
parative RNA-seq. Proliferation studies involving cells
grown in three different mammalian culture media for
6 days demonstrated that RM cells exhibited increased
growth relative to hMSCs. RM cells yielded 10.7-45.3 x 10*
cells with a doubling time of 17.9-24.7 h whereas hMSCs
yielded 1.2-3.9 x 10* cells with a doubling time of 37.8—
60.1 h (Fig. 2a; Bartmann et al. [23] and Schallmoser et al.
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Fig. 1 Characterization of in vitro-cultured FD-derived cells. a FP and RM cells (isolate 2) cultured with 100 ng/mL BMP-2 for 6 days exhibited
increased ALP activity relative to their respective control whereas PP cells (isolate 2) did not. Semi-quantification of ALP activity in FP, PP, and RM
cells. b FP and PP cells (isolate 2) cultured with 100 ng/mL BMP-2 and 100 nM dexamethasone for 24 days did not exhibit increased Alizarin Red
S staining relative to their respective control. Quantification of Alizarin Red S staining in FP and PP cells. ¢ FACS analysis of RM cells. The
percentage of cells that were negative for STRO1 and ALP, negative for STRO1 but positive for ALP, negative for ALP but positive for STRO1, and
positive for both STROT and ALP were 0.28-1.25%, 91.83-97.53%, 0.004-0.10%, and 1.20-7.89%, respectively. STRO1 and ALP immunofluorescence
staining in RM cells. Green, STRO1-positive cells. Red, ALP-positive cells. Scale bars as indicated. Data were from n = 3 isolates (three independent
experiments with nine replicates per isolate for ALP and mineralization studies and one independent experiment with three replicates per isolate
for FACs studies). Gray circles indicate observed data points. Error bars indicate standard error of mean or SEM. Statistical significance as indicated
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[24]). As such, RM cells yielded 8.6—11.7-fold increase in  (Fig. 2a). Cell cycle analysis showed similar results with a
cell numbers and 2.1-2.4-fold less doubling time com- larger percentage of RM cells undergoing cell division
pared to hMSCs when controlled for medium formulation  relative to hMSCs (Fig. 2b). Differentiation studies
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Fig. 2 RM cells exhibit increased proliferation and osteogenic differentiation compared to hMSCs. a RM cells exhibited increased proliferation relative
to hMSGs. b Cell cycle analysis showed an increased proportion of RM cells undergoing cell division relative to hMSCs. ¢ RM cells were capable of
chondrogenic but not adipogenic differentiation. d RM cells (isolate 2) cultured with 100 ng/mL BMP-2 for 6 days exhibited increased osteogenic gene
expression relative to their respective control. @ RM cells cultured with 100 ng/mL BMP-2 and 100 nM dexamethasone for 24 days exhibited increased
Alizarin Red S staining relative to hMSCs. Scale bars as indicated. Data were from n = 3 isolates (three independent experiments with nine replicates
per isolate for proliferation and chondrogenic, adipogenic, and mineralization studies and one independent experiment with three replicates per
isolate for cell cycle studies) or n= 1 isolate (two independent experiments with six replicates for osteogenic gene expression studies). Gray circles
indicate observed data points. Error bars indicate SEM. Statistical significance as indicated
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demonstrated that RM cells did not undergo adipogenic
differentiation but underwent chondrogenesis and osteo-
genesis (Fig. 2c—e). In osteogenic gene expression studies,
RM cells (isolate 2) cultured in the presence for BMP-2
for 6 days showed high upregulation of typical osteogenic

genes such as alkaline phosphatase (alp), osteocalcin
(ocn), osteoblast-specific factor-1 (osf-1), and runt-related
transcription factor-2 (runx2) relative to control by
651.1-fold, 1.9-fold, 42.8-fold, and 557.5-fold, respectively
(Fig. 2d). In osteogenic mineralization studies, control
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groups for RM cells and hMSCs (cultured in the absence of
BMP-2 and dexamethasone) exhibited 28.0 pg/mL and
39.6 pg/mL Alizarin Red S stain, respectively, whereas treat-
ment groups for RM cells and hMSCs (cultured in the pres-
ence of BMP-2 and dexamethasone) exhibited 1702.2 pg/mL
and 98.0 pg/mL Alizarin Red S stain, respectively (Fig. 2e).
Remarkably, even though identical culture conditions were
used, RM cells and hMSCs demonstrated a 62.3-fold and
1.9-fold increase, respectively, in calcium mineralization rela-
tive to their respective controls, with RM cells demonstrating
174-fold increased levels of calcium mineralization com-
pared to hMSCs despite similar baseline levels in the control
groups (Fig. 2e). In addition, RM cells showed 2.0-18.1-fold
increase over hMSC-mediated calcium mineralization des-
pite a 5-fold decrease in BMP-2 concentration, as well as
3.1-fold increase in calcium mineralization over hMSC-like
C3H10T1/2 cells despite a 1.6-fold longer cell doubling time
(Fig. 2; Additional file 1: Figure S3; Ker et al. [25]). Thus, the
sharply contrasting proliferation and mineralization capabil-
ities of RM cells and hMSCs justified the use of this in vitro
model and were expected to identify genes that orchestrate
the differential growth and mineralization rates observed be-
tween deer antlers and human bone.

Identification of deer antler proliferation and
mineralization genes using comparative RNA-seq

To identify the proliferation and mineralization genes that
contribute to the fast growth and differentiation observed
in our in vitro model, we focused our attention on
uniquely expressed genes in RM cells. This was achieved
by independently comparing RNA-seq data of RM cells
(isolate 2) and hMSCs (isolate 24268) under proliferation
(control group, 0% serum; treatment group, 10% serum)
as well as mineralization (control group, 0 ng/mL BMP-2
and 0 nM dexamethasone; treatment group, 100 ng/mL
BMP-2 and 100 nM dexamethasone) conditions (Figs. 3
and 4). RNA-seq proliferation samples were sequenced to
76,781,962-99,716,096 reads per library with replicates
showing a strong correlation of gene expression under
serum-free and serum-containing conditions (Fig. 3a and
Additional file 1: Table S1). As expected of a non-model
organism, a larger percentage of unannotated genes was
present in FD (36%) compared to human (8%) RNA-seq
data (Fig. 3a). Despite this, Ingenuity Pathway Analysis
(IPA) of annotated transcripts showed similar activation of
proliferation-associated pathways such as mitotic roles of
polo-like kinase as well as the expression of typical prolif-
eration genes such as cdkl, rrml, cdc7, aurka, and plk4 in
both datasets (Fig. 3a). Correspondingly, gene ontology ana-
lysis showed upregulation of the processes associated with
proliferation including mitotic checkpoints and chromo-
some condensation (Fig. 3b). Also, RNA-seq mineralization
samples were sequenced to 62,601,720—-86,750,048 reads per
library with replicates showing a strong correlation of gene
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expression under non-mineralization and mineralization
conditions (Fig. 4a and Additional file 1: Table S2). Similar
to the proliferation dataset, a larger percentage of unanno-
tated genes was present in FD (41%) compared to human
(13%) RNA-seq data (Fig. 4a). IPA of annotated transcripts
showed similar activation of osteogenic-associated pathways
such as roles of osteoblasts, osteoclasts, and chondrocytes in
rheumatoid arthritis as well as the expression of typical
osteogenic genes such as dilx5, tsc22d3, alpl, kif4, extl, and
stcl in both datasets (Fig. 4a). Correspondingly, gene ontol-
ogy analysis showed upregulation of processes associated
with skeletal catabolism including collagen synthesis as well
as face and body morphogenesis (Fig. 4b). Subsequently,
subtraction analysis was performed between human and FD
datasets for differentially expressed genes. Using the follow-
ing criteria of highly upregulated (>5-fold) and uniquely
expressed FD genes, 40 proliferation and 91 mineralization
candidate genes were identified (Figs. 3a and 4a). Thus, in
vitro comparative RNA-seq identified gene candidates that
were uniquely expressed in RM cells with a presumed role
in rapid deer antler regeneration.

Validation of in vitro comparative RNA-seq
To validate the physiological relevance and role of
uniquely expressed genes identified by in vitro compara-
tive RNA-seq, a proliferation and mineralization gene
candidate was each selected and further assessed in im-
munofluorescence, gene overexpression, and gene
knockdown studies (Figs. 5 and 6). Since chemical- and
electroporation-mediated transfections of hMSCs were
unsuccessful (data not shown), hMSC-like mouse
C3H10T1/2 cells were used in gene overexpression studies.
Of the 40 proliferation gene candidates, FD uhrfl was
chosen due to its role in epigenetic inheritance [26] and
high expression in several cancers [27], suggesting a role
for this gene in simultaneously controlling stem cell
self-renewal [28] and growth in deer antlers. In immuno-
fluorescence studies, regenerating FD antlers obtained
from an independent herd showed UHRF1 expression in
RM tissue (Fig. 5a) while supplementation of known mito-
gens such as fibroblast growth factor-2 (FGF-2) and
insulin-like growth factor-1 (IGF-1) in RM cells showed a
good correlation between UHRF1 expression and RM cell
proliferation (Additional file 1: Figure S4). For example,
RM cells exhibited increased UHRF1 expression relative
to control when cultured in the presence of IGF-1 under
serum-free conditions as well as in the presence of FGF-2
under both serum-free and serum-containing conditions
(Additional file 1: Figure S4a and S4b). Correspondingly, in-
creased proliferation was only observed under the afore-
mentioned culture conditions but not in the presence of
IGF-1 under serum-containing conditions, where there was
no upregulation of UHRF1 (Additional file 1: Figure S4c).
Together, these data demonstrate the physiological
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Fig. 3 RNA-seq analysis of RM cells and hMSCs under proliferation and mineralization conditions. a RNA-seq analysis of RM cells (isolate 2) and
hMSCs (isolate 24268) under serum-free (0% serum) and serum-containing (10% serum) conditions identified 40 candidate proliferation genes.
Scatterplots indicate the correlation () between replicates for each condition. FPKM, fragments per kilobase of transcript per million mapped
reads. b Gene ontology enrichment analysis of RM cells (isolate 2) and hMSCs (isolate 24268) under proliferation conditions. Graphs indicate the
top 5 upregulated (red) and downregulated (green) biological processes, cellular components, and molecular functions. Data were from n=1
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Fig. 5 Identification of uhrf1 as a uniquely expressed proliferation gene using in vitro comparative RNA-seq. a UHRF1 immunofluorescence staining in
regenerating deer antler tissue. b RM cells cultured with 30 nM uhrf1 siRNAs for 3 days exhibited decreased proliferation relative to mock-transfected
control. ¢ C3H10T1/2 cells stably transfected with uhrfT exhibited increased proliferation relative to untransfected control and empty plasmid control.
C3H10T1/2 cells stably transfected with uhrfl maintained contact inhibition. Representative growth curves are shown. d C3H10T1/2 cells stably
transfected with uhrfl and cultured with 100 ng/mL BMP-2 for 6 days exhibited increased ALP activity relative to untransfected control and empty
plasmid control. Scale bars as indicated. Data were from n = 3 isolates (an independent herd for antler immunofluorescence studies) or n=3
independent experiments with nine replicates per group for uhrfi knockdown and overexpression proliferation and osteoblast differentiation studies.
Gray circles indicate observed data points. Error bars indicate SEM. Statistical significance as indicated
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relevance of uhrfl in FD RM cell proliferation and verified
the expression pattern of this gene relative to our RNA-seq
proliferation data (Fig. 5a and Additional file 1: Figure S4).
In gene knockdown studies, RM cells (isolate 2) treated with
control siRNA yielded 5.1 x 10* cells, whereas groups treated
with siRNAs yielded 2.8-4.2x 10* cells (Fig. 5b and
Additional file 1: Figure S5a). As such, siRNA-mediated
knockdown of uhrfI inhibited RM cell growth of 17.9-45.5%

(Fig. 5b and Additional file 1: Figure S5a). In gene overex-
pression studies, C3H10T1/2 cells and C3H10T1/2 cells sta-
bly transfected with empty plasmid yielded 7.7-9.1 x 10*
cells with a doubling time of 13.9-14.3 h while C3H10T1/2
cells stably transfected with whrfl yielded 13.6 x 10* cells
with a doubling time of 11.8 h (Fig. 5¢). As such, overexpres-
sion of FD whrfl in C3H10T1/2 cells (Additional file 1:
Figure S5b) increased cell proliferation by 1.49-1.76-fold and
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Fig. 6 Identification of s700a10 as a uniquely expressed mineralization gene using in vitro comparative RNA-seq. a ST00A10 immunofluorescence staining in
regenerating deer antler tissue. b RM cells (isolate 2) cultured with 100 ng/mL BMP-2 and 100 nM dexamethasone exhibited increased ST00A10 expression
relative to control. € C3H10T1/2 cells stably transfected with s700a10 and cultured with 100 ng/mL BMP-2 for 4 h exhibited increased alp gene expression
relative to untransfected control and empty plasmid control. C3H10T1/2 cells stably transfected with s700a70 and cultured with 100 ng/mL BMP-2 for 12 days
exhibited increased ocn and runx2 gene expression relative to their respective control. d C3H10T1/2 cells stably transfected with s700a70 and cultured with
100 ng/mL BMP-2 for 4 days exhibited increased ALP activity relative to untransfected control. @ C3H10T1/2 cells stably transfected with s700a70 and cultured
in the presence of 100 ng/mL BMP-2 and 100 nM dexamethasone exhibited increased Alizarin Red S staining relative to untransfected control and empty
plasmid control. Scale bars as indicated. Data were from n = 3 isolates (an independent herd for antler immunofluorescence studies), n = 2-3 independent
experiments with 4-10 replicates per group for osteogenic gene expression studies, n = 3 independent experiments with 9 replicates per group for s100a10
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indicate observed data points. Error bars indicate SEM. Statistical significance as indicated
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decreased cell doubling time by 13.8-15.6% (Fig. 5¢) without
compromising contact inhibition (Fig. 5c and Additional file 1:
Figure S6) or ALP activity (Fig. 5e). This is particularly note-
worthy given that untransfected C3H10T1/2 cells already
grow rapidly and double every 13.9-15.1 h (Fig. 5¢ and Ker
et al. [25]). Thus, in vitro comparative RNA-seq identified
uhrfl as contributing towards a previously unknown role in
FD antler cell proliferation.

Of the 91 mineralization gene candidates, FD s100a10,
which has roles in fibrinolysis and intracellular mem-
brane organization [29], was chosen due to the paucity
of data regarding its role in osteogenesis, making it as a
novel target for further study. In addition, members of
the S100 family of proteins such as S100A4 have been
reported to be a negative regulator of osteoblast differ-
entiation and matrix mineralization [30]. In immuno-
fluorescence studies, regenerating FD antlers obtained
from an independent herd showed S100A10 expression
in the cartilage regions of the antler undergoing
mineralization (Fig. 6a) while S100A10 was upregulated
during osteogenic differentiation of RM cells (Fig. 6b).
Together, these data demonstrate the physiological rele-
vance of s100a10 in FD mineralization and verified the ex-
pression pattern of this gene relative to our RNA-seq
mineralization data (Fig. 6a, b). In gene overexpression
studies, C3H10T1/2 stably transfected with s100a10
(Additional file 1: Figure S7) showed increased alp expres-
sion (Fig. 6¢) and ALP activity (Fig. 6d) relative to empty
plasmid and untransfected controls as well as upregula-
tion of other typical osteogenic genes ocn and runx2 rela-
tive to control when cultured in the presence of BMP-2
(Fig. 6¢). In addition, C3H10T1/2 stably transfected with
5100a10 exhibited increased calcium mineralization rela-
tive to untransfected and empty plasmid controls when in
the presence of BMP-2 and dexamethasone (Fig. 6e).
Under these culture conditions, C3H10T1/2 cells,
C3H10T1/2 cells stably transfected with empty plasmid,
and C3H10T1/2 cells stably transfected with s100a10
exhibited 257.2 pg/mL, 341.9 pg/mL, and 807.9 pg/mL
Alizarin Red S stain, respectively (Fig. 6e). As such, over-
expression of FD s100a10 in C3H10T1/2 cells increased
cell-mediated mineralization by 2.4-3.1-fold (Fig. 6e).
Thus, in vitro comparative RNA-seq identified s100a10 as
contributing towards a previously unknown role in FD
antler cell mineralization. Together, these results demon-
strated the capability of in vitro comparative RNA-seq
analysis to identify uniquely expressed FD proliferation
and mineralization genes.

Discussion

In this study, deer antler-derived RM cells and human bone
marrow-derived mesenchymal stem cells were used to es-
tablish an in vitro model for comparative RNA-seq
(Additional file 1: Figures S1, S2, and S3; Figs. 1 and 2) and
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identified uhrfl and s100al0 as uniquely expressed deer
antler proliferation (Figs. 3 and 5 and Additional file 1:
Figures S4, S5, and S6) and mineralization genes (Figs. 4
and 6 and Additional file 1: Figure S7), respectively. The ap-
proach developed here may be broadly applied towards
studying another biological phenomenon, and the genes
identified with this approach will not only advance our un-
derstanding of mammalian bone regeneration but also offer
promising therapeutic strategies for bone tissue engineering.

Our premise for using an in vitro-based approach was
based on several reasons. First, an in vitro approach enabled
greater experimental control by allowing culture conditions
to define and study the phenomenon-of-interest. Second,
the use of identical conditions for culturing deer and hu-
man cells not only eliminated complex in vivo spatial and
temporal variables but also allowed differential gene expres-
sion data from each species to serve as a basis for compari-
son for identifying uniquely expressed deer antler genes via
a simple subtraction analysis. For example, serum-free and
serum-containing media conditions were used to identify
proliferation genes via differential gene expression. These
experiments are independently performed for human and
deer cells. Thereafter, subtraction analysis between human
and deer proliferation genes would yield uniquely expressed
deer proliferation genes. In addition, an in vitro approach
reduced the logistical burden for long-term housing of a
large, non-model organism such as deer while RNA-seq en-
abled comprehensive and sensitive detection of transcripts
[31] with little bias and error even when non-target species
reference genomes are used [32]. Thus, an in vitro ap-
proach was expected to identify uniquely expressed deer
antler proliferation and mineralization genes.

In establishing this model to identify deer antler prolif-
eration and mineralization genes, hMSCs and RM cells
were compared. The basis underlying this choice stems
from the significant differences in bone growth between
human skeletal and deer antler tissues [3, 4, 6—8] as well
as and the therapeutic promise of recapitulating such
rapid growth in human skeletal tissues. Although hMSCs
and RM cells possess different genetic backgrounds and
they do not originate from anatomically equivalent tis-
sues (hMSCs were obtained from the iliac crest whereas
RM cells were harvested from the cranial pedicle), a
transcriptomic comparison of these cells is still expected
to provide important insights as to the genes necessary
to stimulate fast proliferation and high mineralization,
particularly since hMSCs are a clinically promising
therapeutic target for bone tissue engineering [22, 33].
In addition, in vitro-cultured RM cells exhibited high
osteogenic capability (Additional file 1: Figure S3, Figs. 1
and 2) and similar cell surface markers (ALP and STRO-1)
as their in vivo counterparts [16, 17]. When compared to
hMSCs under identical culture conditions, RM cells dem-
onstrated 8.6—11.7-fold increased cell growth and 17.4-fold
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increased levels of calcium mineralization (Fig. 2), to some
extent reflecting the rapid growth and differentiation phe-
nomena observed in regenerating deer antlers. Together,
these studies justified the use of in vitro-cultured hMSCs
and RM cells to identify deer antler proliferation and
mineralization genes.

To identify deer antler proliferation and mineralization
genes, RNA-seq was performed. Comparison and subse-
quent subtraction analysis of transcriptomes under pro-
liferation and mineralization conditions identified 40
proliferation and 91 mineralization genes that were
uniquely expressed in RM cells (Fig. 3 and Fig. 4). Fur-
ther bioinformatics analysis using commercial and public
databases showed activation as well as enrichment of
proliferation and mineralization pathways or keywords,
concurring with the culture conditions employed (Figs. 3
and 4). To validate the contribution of identified genes,
uhrfl and s100a10 were chosen for further study based
on their potential role in stem cell renewal [28] or nov-
elty, respectively. Although their participation in deer
antler biology have not been reported, other studies have
indicated that UHRF1 is involved in the proliferation
and maturation of colonic T, cells via epigenetic silen-
cing of CDKNA/P21, an inhibitor of cyclin/cyclin-de-
pendent kinase complexes [34] while related members of
the S100 family of proteins such as S100A4 are involved
in negative regulation of osteoblast differentiation [30].
Overexpression of FD uhrfl in a mouse cell line with
hMSC-like characteristics [25] increased cell proliferation
without affecting contact inhibition (Fig. 5, Additional file 1:
Figures S5 and S6) whereas siRNA-mediated knockdown
of uhrfl in RM cells decreased cell growth (Fig. 5 and
Additional file 1: Figure S5). Similarly, overexpression of
FD 5100410 in this mouse cell line increased osteogenic
gene expression, ALP activity, and calcium mineralization
(Fig. 6 and Additional file 1: Figure S7). In addition, the
physiological relevance of these results was confirmed by
immunofluorescence staining of regenerating deer antlers
(Figs. 5 and 6). Thus, in vitro comparative RNA-seq iden-
tified deer antler proliferation and mineralization genes.

The success of in vitro comparative RNA-seq approach
is heavily dependent upon several factors. First, it is neces-
sary to use appropriate in vitro culture conditions that
closely model the biological phenomenon-of-interest. In
this study, we demonstrated that RM cells rapidly prolifer-
ated and exhibited increased calcium mineralization levels
relative to hMSCs, which mimicked the phenomenon of
rapid bone growth in deer antlers (Fig. 2). However, it is
possible that the culture conditions do not accurately re-
flect growth and differentiation stimuli in regenerating
deer antlers, resulting in either false positives or negatives.
As such, it is vital to ascertain the physiological relevance
of these results by determining gene or protein expression
in the relevant biological tissue (Figs. 5 and 6). Despite
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these limitations, our approach was successful in identify-
ing uhrfl and s100al0 as previously unknown FD antler
proliferation and mineralization genes, respectively. How-
ever, additional modifications to this study may extend its
impact further. These include alternative culture condi-
tions that better mimic physiological conditions such as
the use of co-cultures to study antler bone and velvet
(skin) paracrine interactions as well as the additional ap-
plication of more stringent selection criteria such as com-
parison of in vitro (our current study) and in vivo (deer
antler tissue) RNA-seq datasets. Second, it is important to
recognize that in vitro comparative RNA-seq performs
subtraction analysis between differentially expressed RM
genes and its corresponding set of differentially expressed
hMSC genes. As such, it is possible that genes which are
vital in deer antler proliferation and/or mineralization but
are not differentially expressed will not be detected. To
address this, our study adopted a strategy of limited bio-
logical replication (one isolate, two replicates) with a high
number of sequencing reads. This strategy relies on utiliz-
ing a large number of sequencing reads to generate
increased statistical power for sensitive detection of differ-
ential gene expression [35]. Such a strategy would be
particularly important for discovering novel, low copy
transcripts. Indeed, this approach has been successful in
identifying a large number of previously undetected
estrogen-related transcripts in breast cancer cells [36].
Third, since the deer genome was only recently sequenced
[37], sequencing reads were mapped onto the closely re-
lated and well-annotated Bos taurus genome. Although
such cross-species mapping can result in sequence and
expression data loss as well as increased bias and error,
these effect sizes are reported to be small within a
100-million-year window and exhibit better mapping per-
formance relative to de novo transcriptome assembly [32].
Despite this, our deer RNA-seq datasets do contain a large
percentage of unannotated genes, and this result may be
improved by applying orthology-driven Blast mapping.

Conclusion

In conclusion, we have developed an in vitro model for
comparative RNA-seq between FD RM cells and hMSCs to
simplify analysis of transcriptomic datasets and for the first
time to identify unique genes pertinent to deer antler re-
generation. The discovery of these genes advances our un-
derstanding of deer antler biology and offer promising
strategies for rapid bone regeneration. We envisage a simi-
lar comparison strategy can be applied to almost any tissue
for identifying the contributions of uniquely expressed
genes to a phenomenon of interest.

Methods
Detailed materials and methods are provided in
Additional file 1: Supplementary Information.
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Fallow deer

Tissues were harvested from Lazy Arrow Camatta Ranch
(Santa Margarita, CA) and Walking Beam Ranch (Santa
Paula, CA) in accordance with approved guidelines estab-
lished by Stanford University's Administrative Panel on
Laboratory Animal Care (APLAC 28057). Antler tissue was
identified [14] and harvested using enzymatic digestion.

Cell culture

Mouse C3H10T1/2 mesenchymal fibroblasts (American
Type Culture Collection; ATCC, Manassas, VA) were
maintained in DMEM, 10% FBS, and 1% P/S and used
within the first ten passages from the date of receipt. FD
cells were maintained in DMEM, 10% FBS and 1% P/S
and used between passages 2 and 8. Human mesenchy-
mal stem cells (hMSCs; Lonza, Switzerland) were
maintained according to the manufacturer’s instructions
and used between passages 4 and 7. Hoechst staining
(Anaspec, Fremont, CA) was used to monitor myco-
plasma contamination in cell cultures.

Cell proliferation

Cell proliferation studies were performed in DMEM, 10%
EBS, 1% P/S, mesenchymal stem cell growth media (Lonza,
Switzerland), and mesenchymal stem cell growth media
supplemented with 10 ng/mL fibroblast growth factor-2
(FGEF-2; Peprotech, Rocky Hill, NJ). Cells were counted
using a Beckman Coulter Z2 Particle Counter (Beckman
Coulter, Brea, CA), and cell doubling times were calculated
using R-studio (R Studio, Boston, MA, http://www.rstudio.-
com). Cell cycle studies were performed using propidium
iodide/RNAse solution (Cell Signaling Technology, Dan-
vers, MA) on a BD Aria II flow cytometer and analyzed
using Flowjo 9.7.5 (Flowjo LLC, Ashland, OR, http://
www.flowjo.com).

Cell differentiation

Adipogenic and chondrogenic differentiation were per-
formed using StemPro Adipogenic (Gibco, Thermo Fisher
Scientific, Waltham, MA) and StemPro Chondrogenic Media
(Gibco, Thermo Fisher Scientific, Waltham, MA), respect-
ively, according to the manufacturer’s instructions. Osteo-
genic differentiation was performed using either DMEM,
10% EBS, 1% PS, and 100 ng/mL BMP-2 (Infuse Bone Graft,
Medtronic, Sunnyvale, CA) or DMEM, 10% FBS, 1% P/S,
50 pg/mL ascorbic acid, 10 mM [-glycerophosphate,
100 ng/mL BMP-2, and 100 nM dexamethasone (Sigma Al-
drich, St. Louis, MO). Osteogenic gene expression was per-
formed on ¢cDNA templates (RNA isolation: Qiagen RNeasy
Plus Mini kit, Qiagen, Germany; Reverse transcription:
Omniscript kit, Qiagen, Germany) for 40 cycles using
TagMan Gene Expression Mastermix (4369016, Applied Bio-
systems, Thermo Fisher Scientific, Waltham, MA) on an Ap-
plied Biosystems HT7200 thermocycler (Applied Biosystems,
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Thermo Fisher Scientific, Waltham, MA). Gene expression
data were analyzed using SDS 2.2.2 (Applied Biosystems,
Thermo Fisher Scientific, Waltham, MA, http://www.ther-
mofisher.com/). ALP activity (Kit 86C, Sigma Aldrich, St.
Louis, MO) was detected according to the manufacturer’s
instructions. Where necessary, the average pixel intensity
was determined using the image histogram tool in Adobe
Photoshop as previously described [38, 39]. Osteogenic
mineralization was determined using 2% Alizarin Red S
stain (Electron Microscopy Sciences, Hatfield, PA) on
solvent-extracted samples. Absorbance values from the sam-
ples and standards were read at 405 nm using a Tecan Infin-
ite F50 spectrometer (Tecan Trading AG, Switzerland).

RNA-seq

Proliferation libraries were obtained from cells cultured
under DMEM, 0% FBS, and 1% P/S (0% serum) and
DMEM, 10% FBS, 1% P/S (10% serum) while mineralization
libraries were obtained from cells cultured under DMEM,
10% EBS, 1% P/S, 50 pg/mL ascorbic acid, and 10 mM
B-glycerophosphate (control media; without BMP-2 and
dexamethasone) and DMEM, 10% FBS, 1% P/S, 50 pg/mL
ascorbic acid, 10 mM [-glycerophosphate, 100 ng/mL
BMP-2, and 100 nM dexamethasone. RNA was isolated
(Qiagen RNeasy Plus Mini kit, Qiagen, Germany),
reverse-transcribed into ¢cDNA (Ovation RNA-seq System
V2 kit, NuGEN, San Carlos, CA), sheared (S2 Focused-
ultrasonicator, Covaris, Woburn, MA), end-repaired,
dA-tailed, ligated with custom adaptors, and PCR-amplified
for RNA-seq library construction (NEBNext DNA Library
Prep Master Mix Set for Illumina, New England Biolabs,
Ipswich, MA). Samples were sequenced using 100 base-pair,
paired-end RNA-seq technology (HiSeq 2000, lllumina, San
Diego, CA), and data were analyzed using several bioinfor-
matics software including Spliced Transcripts Alignment to
a Reference (STAR; Version 2.3.0, https://code.google.com/
p/rna-star/) [40], SAMtools (Version 0.1.19 http://
www.htslib.org/), the Cufflinks package (Version 2.1.1.1,
https://github.com/cole-trapnell-lab/cufflinks) ~ [41], the
Cummerbund package (http://compbio.mit.edu/cummeR-
bund/), Ingenuity Pathway Analysis (Qiagen, Germany;
https://www.qiagenbioinformatics.com/), and Gene Ontol-
ogy Enrichment Analysis (http://geneontology.org/page/
go-enrichment-analysis). Statistical analyses for RNA-seq
were performed as previously described [41]. Gene candi-
dates were identified based on differentially expressed genes
that exhibited more than fivefold upregulation in control
versus treatment conditions as well as genes that were
uniquely expressed in the FD RM cell dataset. From this set
of candidates, deer uhrfl and s100a10 genes were manually
identified as genes-of-interest based on a literature search
(Pubmed; http://www.pubmed.com) of their known bio-
logical functions and novelty within the context of mamma-
lian bone biology.
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Gene cloning and transfection

Genes were PCR-cloned (Platinum Blue PCR SuperMix,
Invitrogen, Thermo Fisher Scientific, Waltham, MA) from
deer cDNA libraries using primers designed from the
closely related bovine genome prior to subcloning into a
pVitro2-MCS-Blast plasmid (InvivoGen, San Diego, CA).
C3H10T1/2 cells were transfected with 2—3 pg plasmid(s)
containing the gene-of-interest according to the manufac-
turer’s instructions (Polyplus, France), and stably trans-
fected cells were selected using 3 pg/mL blasticidin
(Invitrogen, Thermo Fisher Scientific, Waltham, MA).

siRNA

Cells were transfected with 30 nM wuhrfl siRNA A and E
(siRNAs were custom-designed by Santa Cruz Biotech-
nology Inc., Dallas, TX, based on bovine uhrfl sequence)
according to the manufacturer’s instructions (Polyplus,
France) for 72 h.

Immunofluorescence staining

Cells were fixed in 4% paraformaldehyde (Electron Micros-
copy Sciences, Hatfield, PA), blocked with 10% donkey
serum (Jackson Immunoresearch Laboratories Inc., West
Grove, PA), and incubated with primary antibody followed
by secondary antibody incubation with appropriate washes
in between. Antibodies included 10 pg/mL mouse
anti-Stro-1 (MAB1038, R&D Systems Inc., Minneapolis,
MN), 4 pg/mL rabbit anti-alkaline phosphatase (Sc-98652,
ALP; Santa Cruz Biotechnology Inc., Dallas, TX), 10 pg/mL
rabbit anti-UHRF1 (Sc98704, Santa Cruz Biotechnology
Inc., Dallas, TX), 1 pg/mL mouse anti-S1I00A10 (Ab89438,
Abcam Inc, Cambridge, MA), 15 pg/mL donkey
anti-mouse Alexa 488 (715-545-150, Jackson Immunore-
search Laboratories Inc., West Grove, PA), and 15 pg/mL
donkey anti-rabbit Alexa 647 (711-605-152, Jackson Immu-
noresearch Laboratories Inc., West Grove, PA). Where
necessary, antigen retrieval was performed using antigen re-
trieval buffer solution (IHC World LLC, Woodstock, MD)
at 80-90 °C for 30—60 min prior to antibody incubation.
Average pixel intensity was determined using the
image histogram tool in Adobe Photoshop as previ-
ously described [38, 39].

Statistical analysis

Statistical analyses involving RNA-seq were performed by
Cufflinks and R-Studio [41]. Statistical significance for
differentially expressed genes was established at p < 0.05 and
g <0.05. Statistical analyses not involving RNA-seq were
performed using IBM SPSS Statistics for Windows 22 (IBM
Corp., North Castle, NY, http://www.ibm.com). Quantitative
data was presented as means + standard error of mean
(mean + SEM) where appropriate. Relative fold changes for
PCR data were log transformed in order to make the data
distribution more symmetrical [42]. The Shapiro-Wilk test
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and the Levene test were used to determine whether data
were normally distributed and contained equal variances
among groups, respectively. For two mean compari-
sons, p values were computed via the ¢ test. p values
were calculated using pooled and separate variance for
data with equal and unequal variances, respectively. For
more than two mean comparisons, p values were com-
puted via analysis of variance (ANOVA). If the majority
of the data were normally distributed or there was an
equal variance among groups, p values were calculated
using ANOVA followed by Tukey’s honest significant
difference post hoc multiple comparison test [43, 44].
Otherwise, p values were calculated using Welch’s
ANOVA followed by Games-Howell post hoc multiple
comparison test [45]. Statistical significance was estab-
lished at p < 0.05.
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